Stoikiometri

Konsep Mol: Menghubungkan Dunia Makroskopik dan Dunia Molekular Secara Mikro atom & molekul

Massa atom merupakan massa dari atom dalam satuan massa atom (sma).

Perjanjian internasional: 1 atom ¹²C "beratnya" 12 u

Jika ditimbang

$$^{1}H = 1,008 u$$

$$^{16}O = 16,00 u$$

Tabel periodik mencantumkan massa atom unsur-unsur

1 1A																	18 8A
1 H .008	2 2A	24 — Atomic number Cr 52.00 — Atomic mass								13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003		
3 Li 5.941	4 Be 9.012										5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 9.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 5.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 32.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr 223)	88 Ra (226)	89 Ac (227)	104 Rf (257)	105 Ha (260)	106 Sg (263)	107 Ns (262)	108 Hs (265)	109 Mt (266)	110	111	112						

Metals	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Metalloids	Ce 140.1	Pr 140.9	Nd 144.2	Pm (147)	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0
Nonmetals	90 Th 232.0	91 Pa (231)	92 U 238.0	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (249)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (254)	103 Lr (257)

Litium alam:

7,42% ⁶Li (6,015 u)

92,58% ⁷Li (7,016 u)

Massa atom rata-rata dari litium:

$$\frac{7,42 \times 6,015 + 92,58 \times 7,016}{100} = 6,941 \text{ u}$$

 Punggunaan massa atomik harus mengikut sertakan pecahan desimal (jumlah angka penting menjadi besar) sehingga konstribusi data massa atom ke ketidakpastian tidak signifikan

- 1 dosin = 12 1 box/krat = 24
- 1 gross = 144

1 rim = 500

- Satu mol materi mengandung sejumlah satuan formula (atom, molekul, atau partikel lain) yang sama dengan jumlah atom dari 12 g karbon- $12(^{12}C)$
- 12 g 12 C = 602.213.367.000.000.000.000.000 atom

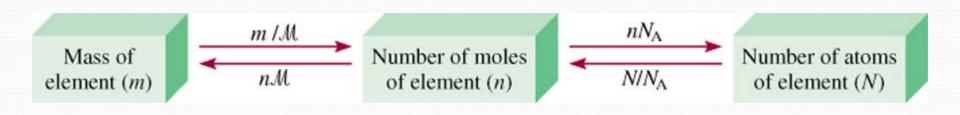
1 mol = N_A = 6,0221367 x 10²³

Bilangan Avogadro (N_{Δ})

Massa Molar: massa dari 1 mol (dlm gram/kg)

1 mol atom
12
C = 6,022 x 10^{23} atom = 12.00 g
1 atom 12 C = 12,00 sma

1 mol atom ${}^{12}C = 12,00 g {}^{12}C$


1 mol atom litium = 6,941 g Li

Bagi tiap unsur

massa atom (sma) = massa molar (gram)

$$\frac{1 \text{ atom}^{12}\text{C}}{12,00 \text{ sma}} \times \frac{12,00 \text{ g}}{6,022 \times 10^{23} \text{ atom}^{12}\text{C}} = \frac{1,66 \times 10^{-24} \text{ g}}{1 \text{ sma}}$$

1 sma = $1,66 \times 10^{-24}$ g atau 1 g = $6,022 \times 10^{23}$ sma

 \mathcal{M} = massa molar dalam g/mol

 N_A = bilangan Avogadro

Apakah Anda Sudah Mengerti Massa Molar?

berapa jumlah atom pada 0,551 g potasium (K)?

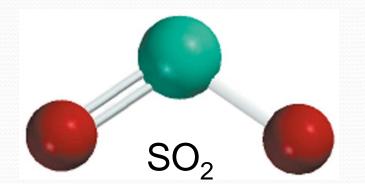
1 mol K = 39,10 g K
1 mol K = 6,022 x
$$10^{23}$$
 atom K

$$0,551 \text{ gK} \times \frac{1 \text{ mol K}}{39,10 \text{ gK}} \times \frac{6,022 \times 10^{23} \text{ atom K}}{1 \text{ mol K}} =$$

 $8,49 \times 10^{21}$ atom K

- Bilangan Avogadro sangat besar karena atom dan molekul terlalu kecil: suatu bilangan yang sangat besar diperlukan untuk sampel dalam skala laboratorium
- Bilangan Avogadro menghubungkan mol dengan atom, atau mol dengan molekul menghasilkan cara mudah menghubungkan massa dengan atom atau molekul

Contoh: Air (massa molar 18.015)


1 mol H_2O \Leftrightarrow 6,022 x 10^{23} molekul H_2O 1 mol H_2O \Leftrightarrow 18,015 g H_2O 18,015 g H_2O \Leftrightarrow 6,022 x 10^{23} molekul H_2O

 Dalam senyawa kimia, mol atom selalu bergabung dalam perbadingan yang sama dengan atom secara individu sehingga:

1 mol $H_2O \Leftrightarrow 2 \text{ mol } H$

- Massa molekuler memungkinkan perhitungan molekul melalui jumlah massa
- Massa molekuler merupakan jumlah massa atom dalam rumus molekul
 - Sebagai contoh untuk air, H₂O, massa molekuler merupakan 2 x massa hidrogen (1,008) ditambah massa oksigen (15,999) = 18,015

- Ingat, senyawa ionik tidak memiliki "massa molekuler" karena tidak mengandung molekul
- Massa satuan formula disebut massa formula
- Massa formula dihitung dengan cara yang sama dengan massa molekuler
 - Sebagai contoh massa formula kalsium oksida, CaO, adalah massa kalsium (40,08) ditambah massa oksigen (15,999) = 56,08

1S 32,07 sma2O $+ 2 \times 16,00 \text{ sma}$ SO₂ 64,07 sma

Bagi tiap molekul

massa molekul (sma) = massa molar (gram)

1 molekul $SO_2 = 64,07 \text{ sma}$ 1 mol $SO_2 = 64,07 \text{ g } SO_2$

Apakah Anda Sudah Mengerti Massa Molekul & Massa Formula?

Berapa jumlah atom H dalam 72,5 g C₃H₈O ?

1 mol
$$C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$$

1 mol C_3H_8O molekul = 8 mol atom H
1 mol H = 6,022 x 10^{23} atom H

72,5 g
$$C_3H_8O$$
 x $\frac{1 \text{ mol } C_3H_8O}{60 \text{ g } C_3H_8O}$ x $\frac{8 \text{ mol H atom}}{1 \text{ mol } C_3H_8O}$ x $\frac{6,022 \text{ x } 10^{23} \text{ atom H}}{1 \text{ mol atom H}} =$

 $5,82 \times 10^{24} \text{ atom H}$

- Stoikiometri merupakan kajian tentang hubungan massa dalam senyawa kimia dan reaksi kimia
- Penggunaan umum stoikhiometri adalah untuk menghubungkan massa reaktan yang diperlukan untuk membuat suatu senyawa
- Perhitungan dapat dilakukan dengan metode faktor-label dan hubungan ekuivalen massa molekul dan atau massa formula yang berkaitan

 Contoh: Berapa gram besi dalam 15,0 g sampel besi (III) oksida?

ANALISIS: 15,0 g Fe₂O₃ \Leftrightarrow ? g Fe

HUBUNGAN: 1 mol $Fe_2O_3 \Leftrightarrow 2$ mol Fe

1 mol $Fe_2O_3 \Leftrightarrow 159.9 g Fe_2O_3$

1 mol Fe ⇔ 55,85 g Fe

PENYELESAIAN:

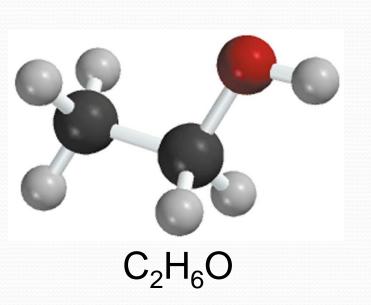
$$15.0 \ g \ Fe_2 O_3 \times \frac{1 mol \ Fe_2 O_3}{159.9 \ g \ Fe_2 O_3} \times \frac{2 \ mol \ Fe}{1 mol \ Fe_2 O_3} \times \frac{55.85 \ g \ Fe}{1 mol \ Fe} = 10.5 \ g \ Fe$$

- Bentuk umum dalam menggambarkan massa relatif unsur dalam senyawa adalah persen massa
- Sering disebut sebagi persen komposisi atau persen komposisi massa
- Persen massa adalah jumlah gram unsur dalam 100 g senyawa yang dirumuskan sebagai:

$$\%$$
 unsur = $\frac{\text{massa unsur}}{\text{massa keseluruha n sampel}} \times 100\%$

Contoh: Suatu sampel dianalisis dan ditemukan bahwa sampel mengandung 0,1417 g nitrogen dan 0,4045 g oksigen. Berapa persen komposisi senyawa ini?

ANALISIS: Cari massa sampel dan hitung % HUBUNGAN: keseluruhan sampel = 0,5462 g JAWABAN:


%
$$N = \frac{0.1417 \text{ g N}}{0.5462 \text{ g sampel}} \times 100\% = 25,94 \%$$

%
$$O = \frac{0,4045 \text{ g O}}{0,5462 \text{ g sampel}} \times 100\% = 74,06 \%$$

Apakah Anda Sudah Mengerti Persen komposisi?

Berapa persen komposisi senyawa etanol C₂H₅OH ?

%C =
$$\frac{2 \times (12,01 \text{ g})}{46,07 \text{ g}} \times 100\% = 52,14\%$$

%H = $\frac{6 \times (1,008 \text{ g})}{46,07 \text{ g}} \times 100\% = 13,13\%$
%O = $\frac{1 \times (16,00 \text{ g})}{46,07 \text{ g}} \times 100\% = 34,73\%$
 $52,14\% + 13,13\% + 34,73\% = 100,0\%$

- Hidrogen peroksida terdiri atas molekul dengan rumus H₂O₂
- Disebut dengan rumus molekul
- Rumus paling sederhana hidrogen peroksida adalah HO yang disebut rumus empiris
- Rumus empiris dapat dihitung dari data massa
- Tujuannya untuk menghasilkan perbandingan bilangan bulat terkecil mol atom

 Contoh: Sebanyak 2,012 g sampel senyawa mengandung 0,522 g nitrogen dan 1,490 g oksigen. Hitung rumus empiris

ANALISIS: Diperlukan perbadingan bilangan bulat terkecil dari mol nitrogen dan oksigen PENYELESAIAN:

0,522 g
$$N \times \frac{1 \text{ mol } N}{14,01 \text{ g } N} = 0,0373 \text{ mol } N$$

1,490 g
$$O \times \frac{1 \text{ mol } O}{15,999 \text{ g } O} = 0,0931 \text{ mol } O$$

$$N_{\frac{0,0373}{0,0373}} O_{\frac{0,0931}{0,0373}} = N_{1,00} O_{2,50}$$

$$N_{1,00 \times 2} O_{2,50 \times 2} = N_{2,00} O_{5,00} = N_2 O_5$$

- Rumus empirik juga dapat dihitung secara tidak langsung
- Jika senyawa hanya terdiri atas karbon, hidrogen, dan oksigen dibakar sempurna dengan oksigen murni maka hanya akan menghasilkan karbon dioksida dan air
- Peristiwa tersebut disebut Pembakaran (combustion)
- Rumus Empirik dapat dihitung dari analisis informasi pembakaran

Contoh: Pembakaran 5,217 g sampel senyawa C, H, dan O menghasilkan 7,406 g CO₂ dan 4,512 g H₂O. Tentukan rumus empirik senyawa.

ANALISIS: Problem multi step. Massa oksigen didapatkan dari selisih:

$$g O = 5,217 g sampel - (g C + g H)$$

massa unsur kemudian digunakan untuk menghitung rumus empirik senyawa

PENYELESAIAN:

$$7,406 \text{ g CO}_2 \times \frac{12,011 \text{ g C}}{44,009 \text{ g CO}_2} = 2,022 \text{ g C}$$

$$4,512 \text{ g H}_2\text{O} \times \frac{2,0158 \text{ g H}}{18,015 \text{ g H}_2\text{O}} = 0,5049 \text{ g H}$$

massa total C dan H = 2,527 g

massa
$$O = 5,217 g - 2,527g = 2,690 g$$

C:
$$2,022 \text{ g C} \times \frac{1 \text{ mol C}}{12,011 \text{ g C}} = 0,1683 \text{ mol C}$$

$$H: 0.5049 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 0.5009 \text{ mol H}$$

O:
$$2,690 \text{ g O} \times \frac{1 \text{ mol O}}{15,999 \text{ g O}} = 0,1681 \text{ mol O}$$

$$C_{\frac{0,1683}{0,1681}}H_{\frac{0,5009}{0,1681}}O_{\frac{0,1681}{0,1681}}=C_{1,001}H_{2,980}O_{1,000}=CH_3O$$

- Rumus untuk senyawa ionik sama dengan rumus empirik
- Untuk molekul, rumus molekul dan rumus empirik biasanya berbeda
- Jika massa molekul eksperimen tersedia maka rumus empirik dapat dirubah menjadi rumus molekul
- Rumus molekul merupakan kelipatan seluruh koefisien dalam rumus empirik

Contoh: Rumus empirik hidrazine adalah NH₂, dan massa molekulernya 32,0. Apa rumus molekul hidrazin?

ANALISIS: Massa molekular (32,0) adalah kelipatan sederhadana dari massa yang dihitung dari rumus empirik (16,03)

PENYELESAIAN:

faktor kelipatan=
$$\frac{32,0}{16,03}$$
=2,00
Rumus yang benar adalah

$$N_{1\times2,00}H_{2\times2,00}=N_2H_4$$

- Koefisien dari reaksi setimbang memberikan informasi perbandingan mol-mol materi yang terlibat dalam reaksi
- Apapun soal dalam perubahan materi yang berbeda biasanya melibatkan hubungan mol-mol
- Bagaimana mendeteksi reaksi tidak setimbang?

contoh: jika 0,575 mol CO₂ dihasilkan dari pembakaran propane, C₃H₈, berapa mol oksigen yang diperlukan? Reaksi setimbangnya adalah:


$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

ANALISIS: Menghubungkan dua senyawa biasanya melibatkan perbandingan mol-ke-mol

PENYELESAIAN:

$$0.575 \text{ mol CO}_2 \times \frac{5 \text{ mol O}_2}{3 \text{ mol CO}_2} = 0.958 \text{ mol O}_2$$

Metode Mol

- Tulis rumus yg benar untuk semua reaktan dan produk dan setarakan reaksi kimianya
- Konversi kuantitas dari sebagian atau semua zat yang diketahui (biasanya reaktan) menjadi mol.
- 3. Gunakan koefisien2 dlm persamaan yg sudah setara untuk menghitung jumlah mol dr kuantitas yg dicari atau yang tidak diketahui (biasanya kuantitas produk).
- 4. Konversi kuantitas yang tidak diketahui menggunakan jumlah mol yang telah dihitung serta massa molarnya.
- 5. Periksalah bahwa jawabannya masuk akal dalam bentuk fisiknya.

contoh: Berapa gram of Al₂O₃ dihasilkan jika 41,5 g
 Al beraksi?

$$2AI(s) + Fe_2O_3(s) \rightarrow AI_2O_3(s) + 2 Fe(I)$$

ANALISIS:

41,5 g Al
$$\Leftrightarrow$$
 ? g Al₂O₃

PENYELESAIAN:

grams $AI \rightarrow mol AI \rightarrow mol AI_2O_3 \rightarrow gram AI_2O_3$

$$41,5~g~AI \times \frac{1\,\text{mol AI}}{26,98~g~AI} \times \frac{1\,\text{mol AI}_2O_3}{2\,\text{mol AI}} \times \frac{102,0~g~AI_2O_3}{1\,\text{mol AI}_2O_3} = 78,45~g~AI_2O_3$$

Persamaan Reaksi

- Persamaan kimia memberikan gambaran kuantitatif reaksi kimia
- Kekakalan massa merupakan dasar penyetimbangan persamaan reaksi
- Untuk menyetimbangkan suatu persamaan:
 - Tulis reaksi yang belum setimbang
 - Sesuaikan koefisien untuk mendapatkan jumlah yang sama untuk semua atom dikedua sisi reaksi

- Panduan penyetimbangan reaksi:
 - 1) Setimbangkan dulu unsur-unsur selain H dan O
 - 2) Setimbangkan sebagai kelompok segala bentuk ion polyatomik yang tidak berubah pada kedua sisi reaksi
 - 3) Setimbangkan secara terpisah unsur-unsur tersebut yang muncul dimanapun sebagai unsur bukan sebagai grup
- Harus digunakan koefisien bilangan bulat terkecil saat menulis reaksi yang setimbang

- Semua reaksi biasanya menggunakan semua reaktan kemudian berhenti
- Reaktan yang dihabiskan terlebih dahulu disebut sebagai reaktan pembatas (limiting reactant) karena membatasi jumlah produk yang dapat terbentuk
- Semua pereaksi yang tidak habis selama reaksi disebut sebagai berlebih (excess) dan disebut sebagai excess reactant
- Perhitungan jumlah produk yang terbentuk selalu berdasarkan limiting reactant

contoh: Berapa gram NO dapat terbentuk jika
 30,0 g NH₃ dan 40,0 g O₂ bereaksi sesuai reaksi:

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

ANALISIS: Soal tentang limiting reactant

PENYELESAIAN:

$$30,0~g~NH_{3}\times \tfrac{1\,mol\,NH_{3}}{17,03~g\,NH_{3}}\times \tfrac{4\,mol\,NO}{4\,mol\,NH_{3}}\times \tfrac{30,01\,g\,NO}{1\,mol\,NO} = 52,9~g~NO$$

$$40,0~g~O_2 \times \frac{1 mol~O_2}{32,00~g~O_2} \times \frac{4 mol~NO}{5 mol~O_2} \times \frac{30,01 g~NO}{1 mol~NO} = 30,01 g~NO$$

O₂ adalah limiting reactant dan 30,01g NO terbentuk

Apakah Anda Mengerti Pereaksi Pembatas?

Dlm suatu proses, 124 g Al bereaksi dg 601 g Fe₂O₃

$$2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$$

Hitung massa Al₂O₃ yang terbentuk.

g Al
$$\longrightarrow$$
 mol Al \longrightarrow dibthkan mol Fe₂O₃ \longrightarrow dibthkan Fe₂O₃

ATAU

g Fe_2O_3 \longrightarrow mol Fe_2O_3 \longrightarrow dibthkan Al \longrightarrow dibthkan g Al

124 g Al x
$$\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$$
 x $\frac{1 \text{ mol Fe}_2\text{O}_3}{2 \text{ mol Al}}$ x $\frac{160 \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3} = 367 \text{ g Fe}_2\text{O}_3$

124 g Al \longrightarrow membthkan 367 g Fe₂O₃

Tersedia Fe₂O₃ (601 g) shg Al adalah pereaksi pembatas

Gunakan pereaksi pembatas untuk menghitung jumlah produk yang dapat dihasilkan.

g Al
$$\longrightarrow$$
 mol Al₂O₃ \longrightarrow g Al₂O₃

$$2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$$

124 g Al x
$$\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$$
 x $\frac{1 \text{ mol Al}_2O_3}{2 \text{ mol Al}}$ x $\frac{102 \text{ g Al}_2O_3}{1 \text{ mol Al}_2O_3} = 234 \text{ g Al}_2O_3$

- Jumlah produk yang didapatkan dalam reaksi kimia selalu lebih kecil dari perhitungan (jumlah maksimum yang mungkin)
- Hasil aktual (actual yield) adalah jumlah produk yang diinginkan yang berhasil didapatkan
- Hasil teori (theoretical yield) adalah jumlah yang berhasil didapatkan jika tidak ada kehilangan (hasil perhitungan, jumlah maksimum)
- Persen yield adalah hasil aktual sebagai persentase hasil teoritis

persentase hasil = $\frac{\text{hasil aktual}}{\text{hasil teoritis}} \times 100\%$

- Yang harus diperhatikan dari persentase yield:
 - Melibatkan pengukuran (actual yield) dan perhitungan (theoretical yield) kuantitas produk
 - Perhitungan dapat dilakukan baik dalam gram maupun mol
 - Hasil tidak pernah lebih besar dari 100%